Maximal volume entropy rigidity for RCD∗(−(N−1),N) spaces

نویسندگان

چکیده

For $n$-dimensional Riemannian manifolds $M$ with Ricci curvature bounded below by $-(n-1)$, the volume entropy is above $n-1$. If compact, it known that equality holds if and only hyperbolic. We extend this result to $\mathsf{RCD}^{\ast}(-(N-1),N)$ spaces. While upper bound straightforward, rigidity case quite involved due lack of a smooth structure in $\mathsf{RCD}^{\ast}$ As an application we obtain almost which partially recovers Cheng-Rong-Xu for manifolds.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Measures of maximal entropy

We extend the results of Walters on the uniqueness of invariant measures with maximal entropy on compact groups to an arbitrary locally compact group. We show that the maximal entropy is attained at the left Haar measure and the measure of maximal entropy is unique.

متن کامل

Foliated Entropy Rigidity

In this article, we develop a general foliated version of the entropy rigidity theorem and “Real Schwarz Lemma” of Besson, Courtois and Gallot.

متن کامل

Superatomic Boolean algebras: Maximal rigidity

We prove that for any superatomic Boolean Algebra of cardinality > i4 there is an automorphism moving uncountably many atoms. Similarly for larger cardinals. Any of those results are essentially best possible

متن کامل

Minimal entropy rigidity for lattices in products of rank one symmetric spaces

where B(x,R) is the ball of radius R around a fixed point x in the universal cover X. (For noncompact M , see Section 6.2.) The number h(g) is independent of the choice of x, and equals the topological entropy of the geodesic flow on (M, g) when the curvature K(g) satisfies K(g) ≤ 0 (see [Ma]). Note that while the volume Vol(M, g) is not invariant under scaling the metric g, the normalized entropy

متن کامل

Marked length rigidity for one dimensional spaces

In a compact geodesic metric space of topological dimension one, the minimal length of a loop in a free homotopy class is well-defined, and provides a function l : π1(X) −→ R+ ∪ ∞ (the value ∞ being assigned to loops which are not freely homotopic to any rectifiable loops). This function is the marked length spectrum. We introduce a subset Conv(X), which is the union of all non-constant minimal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the London Mathematical Society

سال: 2021

ISSN: ['1469-7750', '0024-6107']

DOI: https://doi.org/10.1112/jlms.12470